Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

mer-(2-Formylatocyclohexen-1-olato- $\kappa^2 C^2$, O^1)-iodotris(trimethylphosphine- κP)cobalt(III)

Fengli Yu, Shuli Dong, Jin Zhou, Aichen Wang, Hongjian Sun and Xiaoyan Li*

School of Chemistry and Chemical Engineering, Shandong University, Shanda Nanlu 27, Jinan 250100, People's Repubic of China

Correspondence e-mail: xli63@sdu.edu.cn

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(\text{C-C}) = 0.011 \text{ Å}$ Disorder in main residue R factor = 0.053 wR factor = 0.152 Data-to-parameter ratio = 21.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

In the title compound, $[CoI(C_7H_8O_2)(C_3H_9P)_3]$, the cobalt center is in a distorted octahedral geometry.

Received 5 January 2005 Accepted 28 January 2005 Online 5 February 2005

Comment

In 1998, Klein and co-workers reported some novel acylhydrido-cobalt(III) complexes, which are stabilized through 2-acylphenolato-chelating ligands and with the support of trimethylphosphine (Klein *et al.*, 1998*a*). They can react with acetic acid, hydrogen halides, substituted salicylaldehyde, substituted malondialdhyde, alkyl halides, perchloric acid and 2-nitrophenol. (Klein *et al.*, 1998*b*, 2003). In addition, insertion of phenylethyne into a Co—H bond of these acyl-hydrido-phenolato-cobalt(III) complexes was found and afforded vinyl-cobalt(III) complexes (Klein *et al.*, 2000).

The title compound, (I), was synthesized by the reported method of Klein *et al.* (1998b). Single crystals suitable for X-ray diffraction analysis were obtained. A view of the molecular structure is given in Fig. 1. The cobalt center is in a distorted octahedral geometry. The Co—I distance of 2.715 (1) Å is relatively long due to the strong *trans* influence of the acyl group. The cyclohexene ring in the structure showed a twofold positional disorder.

Experimental

Standard techniques were used in manipulations of volatile and airsensitive material. The title compound was synthesized by the reaction of *mer*-(1-carbonyl-2-oxocyclohexenediyl)hydridotris(trimethylphosphine)cobalt(III) (1 g, 2.42 mmol) with iodomethane (450 mg, 3.17 mmol) in diethyl ether (80 ml) for 18 h at room temperature. Brown crystals suitable for X-ray diffraction analysis were obtained by crystallization at 269 K from diethyl ether.

Crystal data

[CoI($C_7H_8O_2$)(C_3H_9P)₃] $M_r = 538.18$ Orthorhombic, $P2_12_12_1$ a = 10.184 (2) Å b = 12.182 (2) Å c = 18.987 (3) Å V = 2355.5 (7) Å³ Z = 4 $D_x = 1.518$ Mg m⁻³ Mo $K\alpha$ radiation Cell parameters from 3854 reflections $\theta = 2.2-24.3^{\circ}$ $\mu = 2.25 \text{ mm}^{-1}$ T = 293 (2) KBlock, brown $0.26 \times 0.18 \times 0.16 \text{ mm}$

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

metal-organic papers

Data collection

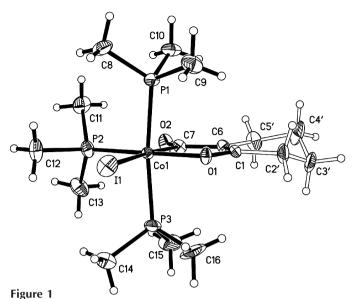
Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.546$, $T_{\max} = 0.698$ 13537 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.152$ S = 1.08 4800 reflections 221 parameters H-atom parameters constrained 4800 independent reflections 3421 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.054$ $\theta_{\rm max} = 26.4^{\circ}$ $h = -5 \rightarrow 12$ $k = -15 \rightarrow 15$ $l = -23 \rightarrow 23$

$$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0646P)^{2} + 5.7779P]$$
where $P = (F_{o}^{2} + 2F_{c}^{2})/3$

$$(\Delta/\sigma)_{\text{max}} = 0.001$$


$$\Delta\rho_{\text{max}} = 1.01 \text{ e Å}^{-3}$$

$$\Delta\rho_{\text{min}} = -1.20 \text{ e Å}^{-3}$$
Absolute structure: Flack (1983), 2071 Friedel pairs
Flack parameter = -0.08 (4)

H atoms were placed in idealized positions (C-H = 0.96 Å) with fixed isotropic displacement parameters and allowed to ride on their parent C atoms. The cyclohexene ring is disordered over two positions, with occupancy factors of 0.567 (16) and 0.433 (16). The C-C distance of the disordered ring was restrained to 1.52 Å. The highest peak in the difference map was 0.52 Å from atom Co1 and the depest hole was 0.70 Å from I1.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Sheldrick, 2001); software used to prepare material for publication: *SHELXTL*.

Financial support of this work by the Excellent Young Teachers Program of MOE, People's Repubic of China, and by the Scientific Research Foundation for the Returned Overseas Chinese Scholars/State Education Ministry, Natural Science Foundation of Shandong University for Young Scientists, is gratefully acknowledged.

The molecular structure of the title complex. Displacement ellipsoids are drawn at the 50% probability level. Only one component of the disorder is shown.

References

Bruker (1997). SMART (Version 5.6) and SAINT (Version 5.06A). Bruker AXS Inc., Madison, Wisconsin, USA.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Klein, H.-F., Haller, S., Sun, H., Li, X. Y., Jung, T., Röhr, C., Flörke, U. & Haupt, H.-J. (1998a). Z. Naturforsch. Teil B, 53, 587–598.

Klein, H.-F., Haller, S., Sun, H., Li, X. Y., Jung, T., Röhr, C., Flörke, U. & Haupt, H.-J. (1998b). Z. Naturforsch. Teil B, 53, 856–864.

Klein, H.-F., Li, X. Y., Flörke, U. & Haupt, H.-J. (2000) Z. Naturforsch. Teil B, 55, 707–717.

Klein, H.-F., Li, X. Y., Flörke, U. & Haupt, H.-J. (2003). Inorg. Chim. Acta, 342, 179–184.

Sheldrick, G. M. (1996). *SADABS*. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Sheldrick, G. M. (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.